
The Journal of Supercomputing, 35, 301–320, 2006
C© 2006 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Tulip: A New Hash Based Cooperative Web Caching
Architecture

ZHIYONG XU zxu@mcs.suffolk.edu

CS Department, Suffolk University

LAXMI BHUYAN bhuyan@cs.ucr.edu

CSE Department, UC, Riverside

YIMING HU yhu@ececs.uc.edu

ECECS Department, University of Cincinnati

Abstract. With the exponential growth of WWW traffic, web proxy caching becomes a critical technique

for Internet web services. Well-organized proxy caching systems with multiple servers can greatly reduce

the user perceived latency and decrease the network bandwidth consumption. Thus, many research papers

focused on improving web caching performance with the efficient coordination algorithms among multiple

servers. Hash based algorithm is the most widely used server coordination mechanism, however, there’s still

a lot of technical issues need to be addressed. In this paper, we propose a new hash based web caching

architecture, Tulip. Tulip aggregates web objects that are likely to be accessed together into object clusters

and uses object clusters as the primary access units. Tulip extends the locality-based algorithm in UCFS to

hash based web proxy systems and proposes a simple algorithm to reduce the data grouping overhead. It takes

into consideration the access speed dispatch between memory and disk and replaces expensive small disk I/O

with less large ones. In case a client request cannot be fulfilled by the server in the memory, the system fetches

the whole cluster which contains the required object into memory, the future requests for other objects in the

same cluster can be satisfied directly from memory and slow disk I/Os are avoided. It also introduces a simple

and efficient data dupllication algorithm, few maintenance work need to be done in case of server join/leave

or server failure. Along with the local caching strategy, Tulip achieves better fault tolerance and load balance

capability with the minimal cost. Our simulation results show Tulip has better performance than previous

approaches.

1. Introduction

Internet experienced an exponential growth in the past decade. Web proxy caching (here-
after referred as web caching) is an important technique to deal with the fast increasing
Internet traffic. Web caching systems usually locate between the end users and the orig-
inal web servers. Proxy servers can quickly satisfy the local client requests with cached
web objects and avoid expensive accesses to the remote original servers. It is an effective
mechanism to achieve server load balance, reduce network traffic and decrease the client
perceived latencies.

Since web caching techniques are widely used in organizations (universities, govern-
ment agencies, corporations and ISPs), the number of proxy servers deployed on the
Internet increases dramatically in recent years. However, the enormous web documents

302 XU, BHUYAN AND HU

make it difficult to achieve good performance, especially with a single proxy server
configuration. A single proxy server can easily become a bottleneck or cause a sin-
gle point of failure problem. As the number of clients increases, the workload on the
proxy server rises and the server performance degrades. Many research papers have
suggested the coordination among multiple servers to improve the web caching perfor-
mance [8, 13, 15, 19, 20, 23, 24].

Existing cooperative web caching systems can be categorized into two types. The
first approach is hierarchical architecture, it was first introduced in Harvest Cache [4].
In Harvest Cache, a series of proxy servers create a hierarchical structure arranged in a
tree-like structure. A child server can query its parent server or other child servers in the
same layer for a certain web object. Internet Caching Protocol (ICP) [21] is used as the
basic mechanism for intercache communication. However, this approach is not scalable,
it has a serious problem: in case the server cannot find the requested object in its cache, it
does not know which server in the same layer might have the data, thus it must broadcast
the client request to all the other servers in the same layer which generates a lot of query
traffic.

The second approach is hash based web caching system [16]. It uses hash based
allocation algorithm for the content dissemination. Each cached web object has exactly
one copy in a pre-defined location within a proxy array (a group of proxy servers). Cache
Array Routing Protocol (CARP) [5] is used as the basic protocol. In this approach, no
search algorithm is needed since the location of all web objects are fixed, thus it is an
ideal approach to resolve the previous problem in hierarchical architecture. Though this
approach comes with other issues, we will give the details in the following sections.

In this paper, we propose a new solution Tulip, to address the existing problems in
current hash based web caching systems. Tulip groups topologically close proxy cache
servers into cache arrays as other hash based approaches. However, Tulip has several
differences. It groups the web objects that are likely to be accessed together into object
clusters and use object clusters as the primary transfer units between the memory and
the disk. In case a client requests one object, the server fetches the whole cluster from
the disk into memory, only one large disk I/O is required. Further requests for other
objects in the same cluster can be satisfied from the memory directly, several expensive
disk I/Os can be avoided. We also introduce an efficient data duplication mechanism to
deal with server join/leave problem and achieve load balance. In case a server join or
server leave/failure occurs, Tulip system can remain stable with the minimal overhead
introduced. Tulip aims to be robust, efficient and fault tolerant.

The rest of the paper is organized as follows. We discuss the issues in today’s web
caching systems and the motivations of Tulip in Section 2. In Section 3, we describe
the Tulip system design in details. We evaluate Tulip system performance in Section 4.
Section 5 discusses the related works and finally, we draw the conclusion and give the
future work in Section 6.

2. Motivations

The goal of Tulip system is to design a efficient hash based web caching system with
minimal disk access overhead, optimal server load balance, robust fault tolerance and

TULIP: A NEW HASH BASED COOPERATIVE WEB CACHING ARCHITECTURE 303

efficient server join/leave operations. In this section, we analyze the problems in current
hash based web caching systems and the motivations for our project.

The most popular technique for proxy cache cooperation is creating a cache hierarchy.
However, it is not scalable and has several drawbacks [17]. First, every hierarchy layer
introduces additional delay; second, a lot of redundant document copies are stored at
every hierarchy level, and third, higher level caches tend to become bottlenecks. The
fourth and the most serious issue is the high cost of query message broadcasting in case
of the proxy cache server cannot satisfy the local client request.

For hash based web caching systems, a hash function is used to create a fixed mapping
relation between an object and the proxy server which is used to store this object, the
hash value is also used as the key for the searching procedure. However, server join/leave
operations are very expensive, nearly all the cached web objects must be moved from
one server to another.

Another issue in hash based caching system is the “hot spot” or “single point of failure”
problem. Since each object only has one copy within a cache array, the requests for a
certain object can only be satisfied by one specific proxy server and that server might
become overloaded in case a large volume of requests are coming simultaneously. Also,
in case of a server failure, all the requests for the web objects previously cached on that
server will fail. Thus, it will result in a great degradation in web caching performance.

The above problems are under heavy attacks in recent years, different solutions are
proposed to solve or relieve these problems. Tulip tries to address these two problems
with low cost mechanisms. Using a simple and efficient data duplication mechanism,
Tulip can easily deal with them without introducing too much extra cost.

Tulip also addresses other issues which are not fully considered in the previous web
caching system researches. First is the spatial localities among different web objects.
We define web access spatial locality as following: If object A is requested by a client
N, in most cases, object B will also be requested by N in the following requests, then
we define the spatial locality exists between object A and B. In Tulip, we exploit spatial
locality by grouping the web objects which are likely to be accessed together into object
clusters.

The second issue is the access speed dispatch between the memory and the disk.
Generally, disk accesses are hundreds of times slower than memory accesses. The typical
disk access time is around 5 ms while memory access time is only 50 ns. Studies have
shown that 75% or more web documents in web proxy traffic are less than 8 KB [14], and
the conventional file systems cannot handle small files efficiently. The frequent accesses
to the files on the disk introduce expensive disk seeking and rotational latencies. However,
the current web caching coordination solutions do not address this problem very well.
We relieve this problem by replace many small disk I/Os into big ones to reduce the disk
access overhead.

3. Tulip system design

Tulip is a hash based cooperative web caching system. As other hash based systems, in
Tulip, several proxy servers are grouped together in a cache array to provide caching
service to all the clients within this array. A fileid is generated for each file using a hash

304 XU, BHUYAN AND HU

function and used as the key for searching process. The whole hash space is divided into
several disjointed zones with each server responsible for caching the objects whose hash
key mapped into the corresponding zone. If a client request cannot be fulfilled by any of
the servers, the responsible server will fetch the file from the remote original web server
and store the file in its cache. The goal of Tulip system is to create a well-organized
proxy cache server coordination model, provide higher caching service, better load
balance and fault tolerance than the current approaches with minimal extra overheads.
In this section, we describe the Tulip system design in detail and we concentrate our
discussion on differences from other systems only.

3.1. Basic architecture

As shown in Figure 1, in Tulip, the cache space on each server is explicitly divided into
two types: a Buffer Cache, which locates in a server’s memory and a Disk Cache which
locates on the hard disk. Current hash based caching systems do not divide the cache
space, they view the cache space on a proxy server as a single entity and concentrate
on improving cache hit rate, no matter the data locating in the memory or on the disk.
However, because of the large access dispatch between memory and disk I/Os, the
overheads of fetching cached objects from hard disk cannot be ignored.

Tulip focuses on reducing the average user perceived latency by increasing the buffer
cache hit rate and reduce the number of small disk I/Os. In Tulip, correlated files that are
likely to be accessed together are grouped into clusters and clusters are used as the basic
transfer units between the memory and the disk. If a file is requested by a client and the
cluster which contains this file is stored on the disk, Tulip reads the whole cluster into the
buffer cache with only one big disk I/O. If a high percentage of other files in this cluster
will be accessed by the following requests, the buffer cache hit rate can be improved,
many small disk I/Os are avoided. Thus, the user preceived latency will decrease.

Assume a 64 KB data can contain 164 KB files. For modern disk systems, the typical
time to read a 64 KB data is 7.1 ms while for a 4 KB data is 6.1 ms. There’s only
1ms difference. This is because in a disk I/O, the rotational latency and the seek time

Figure 1. Tulip web caching system architecture.

TULIP: A NEW HASH BASED COOPERATIVE WEB CACHING ARCHITECTURE 305

dominate the whole access time, real data transfer operation only takes a small portion.
If all these 16 files are fetched from disk individually, the total disk I/O time is 16 ∗
6.1 (equals 97.6 ms). Even only 4 files are actually required in the near future, it still
needs to take 4 ∗ 6.1 (equals 24.4 ms). Clearly, Tulip can greatly reduce the disk access
overhead.

In Tulip, we use a file’s original hostname to determine which server to cache this file.
All the files from the same original web server are cached on the same proxy server. The
whole hash space is divided into several disjoined zones and each server is responsible
for one zone. Each client has a designated proxy server and it sends its requests to this
server. In case of searching a file, the designated server calculates a hash key with the
hostname in the file’s URL string and then it forwards the request to the server which
the hash key mapped into the corresponding zone. Then that server fetches the file from
its cache or the original server. If no local caching is enabled, it returns the cluster
containing that file to the client directly. If local caching is enabled, it sends the cluster
to the designated server, the designated server returns the file to the client and stores the
cluster in its local cache. Clearly, using hostname to generate the hash key is suitable
for our purpose, the files from the same original server have higher possibility to be
accessed together than files from different original servers.

We use two different mechanisms to exploit spatial localities: a dynamic mechanism
and a static mechanism. The first one is extended from UCFS [22], it is complex but
accurate. The second one is simple with the minimal overhead, however, it is not as
accurate as the first mechanism.

3.2. Dynamic data grouping mechanism

The dynamic data grouping mechanism is adopted from UCFS [22]. We extend UCFS
from a single proxy server to a distributed web caching system. We also migrate Cluster
File System (CFS) from UCFS. A file can be uniquely identified by its URL string.
However, the URL strings are too long and require significant storage space to store. As
UCFS, MD5 algorithm is used to generate an unique key for each cached file in Tulip.

As shown in Figure 2, in the dynamic mechanism, the following data structures are
used:

1. An In-memory File Lookup Table. this table is very important, it contains the location
information for all cached files, it is used to track all files on the server. It is located in
the memory to avoid slow disk I/O overheads. For a 4 million entries in this table, the
total size is less than 96 MB, compare to the typical 512 MB or even 1 GB memory
on a proxy server, this is affordable.

2. A Buffer Cache. it is divided into cold buffer, medium buffer and hot buffer. Files are
located in different buffers according to their access frequency. When the files are
fetched from disk, they are put into medium buffer first. In case the medium buffer is
full, the frequently accessed objects are moved to hot buffer, and the least frequent
used objects are moved to cold buffer.

3. A Disk Cluster Table. records the status of all disk clusters. In case of the RAM Buffer
Cache are full, system searches this table and groups several files into a object cluster

306 XU, BHUYAN AND HU

Figure 2. The In-memory data structure in the dynamic mechanism.

and write it to the disk within a one big write. The above three data structures are
located in memory.

4. A Cluster-Structured File System (CFS). Since clusters are used as the basic units for
disk I/Os, we cannot use the current file systems which does not support this situation
very well. CFS is similar to LFS by using its raw disk I/Os, and unlike LFS, CFS
does not require high file system consistency, the maintenance overheads are greatly
reduced.

In dynamic algorithm, a locality-based algorithm called two-level URL resolution
grouping algorithm which is firstly introduced in UCFS is used to group files. To start a
group, the system first chooses a file to be swapped out and allocates a write buffer for this
grouping, then system chooses other candidate files based on their locality association
with the first evicted file. The detailed description and data operations on clusters can
be found in [22].

3.3. Static data grouping mechanism

As shown in UCFS, the locality-based algorithm can effectively group files with spatial
localities into the same cluster. However, it also introduces considerable overheads. A
lot of data structures need to be maintained. In Tulip, we introduce another data grouping
mechanism as well. The idea is very simple: The files that have more identical contents
in their URL strings have more possibility to be accessed sequentially. This is because
an HTML file often has many embedded files such as image files and audio/video files
that will be accessed together. Moreover, the HTML file may also contain hypertext
links to other HTML files, which are likely to be accessed in the near future by the same
user. For example, three objects c.htm, d.jpg and e.gif all have the same contents in
their URL strings “http://hostnameA/directoryB/XXXX”, these objects are very likely
to be accessed together and should be grouped into the same cluster. Since we already

TULIP: A NEW HASH BASED COOPERATIVE WEB CACHING ARCHITECTURE 307

have URL stirng information for each file, we can simplely group the files in the same
directory into the same cluster before any access history information obtained.

In our static mechanism, the cluster creation procedure is as following:

1. Choosing an original web server hostname;
2. Start from the lowest directory on this web server. The files in the same directory

are grouped into one or several clusters. In case the files within one directory cannot
fill one cluster, the files in upper layer directory and sibling directories or files from
hypertext links can be grouped together. In case the size of a file is larger than the
size of the cluster, it can be divided into several clusters. We do not group files bigger
than 256 KB;

3. After a new cluster is created, the individual files are removed. System goes back to
the second step again for remaining files;

4. After all the files on the same original server are grouped into clusters, system goes
to step 1 to start another process on a new web server.

Figure 3 shows the disk layout for our system. For both dynamic and static algorithms,
we have the similar disk layout. However, in dynamic algorithm, the files grouped into the
same cluster are generated according the client access history, while in static algorithm,
the files in the same cluster are the files which reside in the same directory or adjacent
directories from the same original web server.

Static mechanism has several advantages compared to the dynamic mechanism. First,
it is very simple, it avoids the expensive spatial locality analysis procedure and the
maintenance overheads. Second, we can use the URL string based data grouping (such
as http://hostA/directoryB) instead of the hostname as the hash key and distribute files
on the same original server to different proxy servers. Thus it can relieve the “hotspot”
problem on a specific server. A drawback of the static mechanism is the contents in

Figure 3. Disk layout table in our system.

308 XU, BHUYAN AND HU

a cluster do not change as the time passes. However, this problem can be relieved by
periodically refreshing the cache contents on each server. Our simulation results show
it can also achieve very good performance, although it is not as good as the dynamic
mechanism.

3.4. Duplication strategy

For the standard hash based web caching system, each file has a fixed mapping relation
with the server which caches it. The system forwards a client request to a proxy server
according to the requested file’s hash value. It neither needs to query a neighbor server
nor exchange object lists among servers. This scenarios may easily cause a “hotspot” or
“a single point of failure” problem. Another problem is in case of a server failure or a
new server being added into the cache array, rebuilding the hash function is necessary
and may result in a large volume of file migrating from one server to another. Robust
Hashing [19, 20] solved the file migration problem by using multiple hash functions
and caching a file on the server with the highest value. Only 1/n (n is the number of
the files) files need to relocate when a new server is added and no operation needed
in case of a server failure. Duplicated Hashing [13] created a second copy for each
object by using the largest two hash values. It can effectively relieve the first problem.
However, in these two systems, each time when a user request comes, the designated
server must calculate multiple hash values before the forwarding decision is made.
Thus, they generate considerable computation overheads, especially when the number
of servers in a cache array is large.

Tulip system uses a simple and efficient duplication mechanism, it can achieve minimal
data migration with the lowest computation overhead. In Tulip, each server duplicates
half of its neighbor servers’ contents. A simple illustration of our duplication strat-
egy is in Figure 4. In this sample system, there are four proxy servers in the cache
array. Assuming the hash space is [0,1023], and each server holds the files whose
hash keys are within [0,255], [256,511], [512,767] and [768,1023] respectively. We
divide all cached files into 8 subsets: D0 through D7. The size of each subset is 128.
Each server caches files in 4 subsets. Server 0 holds subsets: D0, D1, D7 and D2. It is
called the primary cache server for subsets D0 and D1 (for the files whose hash key
is between [0,127] and [128,255]) and the secondary cache server for subsets D7 and
D2.

With this file duplication strategy, the server can provide robust service and relieve
“hotspot” and “single point of failure” problems. Since the system knows exactly
which server has the copy for a certainsubsets, it can easily distribute client requests
to either server and achieve better load balance. It can also forward the request to the
remaining alive server if one of the two servers crashes. Tulip achieves this without
extra computation overhead. fault tolerance. With two copies existed in two different
servers simultaneously, if either of the servers fails, Tulip system still can provide
caching service for the files on the other server. Thus the single point of failure problem
is solved. Since the system knows exactly which servers contain the required data, a
cached file in one server is also cached in the other two other servers. No multiple hash
keys need to be calculated. File duplications can also be used for load balance purpose.

TULIP: A NEW HASH BASED COOPERATIVE WEB CACHING ARCHITECTURE 309

Figure 4. Tulip duplication strategy, 4-servers Cache array, Hash Space [0,1023] with 8 Subsets.

In case of the primary server hasheavy workload, clients can send their new requests to
the secondary server. This is especially useful tosolve “hotspot” issue.

3.5. Server join/leave and failure

An important design principle in Tulip system is to reduce the impacts on system caching
performance in case of environment change. In this section, we give the detailed discus-
sion.

In Tulip, when a server failure occurs, the workload on this server can be automatically
taken by its two neighboring servers. The system performance degrades gracefully. For
example, in Figure 4, if server 2 fails, the workloads previously forwarded to server 2 are
now automatically transferred to server 1 and server 3 according to the hash key of the
requested file. Now, server 1 is responsible for cached files in 3 subsets: D0, D1 and D2.
Server 3 is responsible for subsets D3, D4 and D5. However, server 4 is still responsible
for two subsets D6 and D7 only. Thus, after a server failure, different servers maintain
different number of subsets. However, this does not mean a server covering more subsets
definitely has heavier workloads than a server covering fewer subsets. This is because
different files have different access frequency. By using local caching technique together,
Tulip still achieves good load balance with unevenly distributed subsets among servers.
We choose this strategy because of its simpleness. No files need to be relocated.

310 XU, BHUYAN AND HU

In above mechanism, we suppose the failed server will soon recover after the failure
is detected. However, if the server is permanently removed from the cache array, there
are only three servers. Tulip needs to do a lot of file migration. The whole hash space
need to be re-divided into 6 subsets and each server covers 4. However, there’s a large
overlap between the previous subsets and the new subsets as shown in Figure 4. Since the
remaining servers can still provide caching services for all the subsets, the reconstruction
procedure can be done gradually. The file migration operations are taken in the time when
the client demand is low and each time only deal with one server. Thus, it does not affect
system caching performance too much.

In case there are two servers out of service simultaneously, if they are not neighboring
servers, the system can still provide service for all subsets with the remaining two servers.
If they are two neighboring servers, files in certain subsets are lost, the system caching
performance is degraded dramatically when clients request these files. However, since
proxy servers are relatively stable, such kind of problem rarely happens.

When the number of client requests increases, the service provider may add new
proxy servers into the cache array. Tulip uses two different strategies in case of a new
server being added. One is a simple strategy which only affects two existing servers. As
shown in Figure 5, the new server 1’ is added and Tulip puts it between server 1 and
2. Then, only subsets D0 through D3 are affected. The files will be re-divided into 6
new subsets: D0’ through D5’ and they are redistributed on server 1, 1’ and 2. The only
modification on server 3 is it is the secondary server for subset D5’ but not D3. Since
D5’ is only part of original D3, no file migration are needed. Server 3 can simply remove
the files not belonging to D5’. For server 4, the same situation happens for subset D0’.
As we mentioned earlier, uneven subset distribution does not necessarily cause uneven
workload. The other one is a standard strategy, the hash space will be re-divided into
10 subsets: D0’ through D9’, each server still caches files in 4 subsets. However, it will
generate considerable overheads. As a server permanently removed from the cache array,

Figure 5. Cache array after a new server joins.

TULIP: A NEW HASH BASED COOPERATIVE WEB CACHING ARCHITECTURE 311

this operation can also be done when the service demand is low and dealing with only
one server at one time.

We choose these two strategies based on two facts. First, proxy servers are much more
stable than the ordinary client computers. After the deployment of proxy servers, they
keep stable for a long time, the server location and the number of proxy servers in a cache
array are seldom changed. The second fact is even hash space division does not result
in equal workloads on each server. Some hot files have higher request rate than other
files. By forwarding requests to both servers, this problem can be relieved even with
an uneven division of hash space among proxy servers. Using local caching technique
to solve the local requests can further relieve the workload on specific servers. We will
discuss it in Section 3.7.

3.6. Duplication maintenance

While files are duplicated on two servers, the primary server must notify the secondary
server the content change on some subsets. This will introduce new maintenance over-
head. It is unaffordable to keep synchronous notification. To reduce the network traffic
caused by the file copies, the primary and secondary servers need not to contain identical
contents all the time. In Tulip, we use periodical noification mechanism. The primary
server records a log of the changed contents since the last notification and sends them
together to the secondary server from time to time. The interval of notifications can be
varied according to the current client request rate and network traffic condition.

This strategy is reasonable. Since the hot files which are frequently accessed by clients
will stay in the cache, only the less frequently accessed files have high possibilities to be
replaced by other files. Thus, even we define a relative long notification time interval, hot
files are still exist in both primary and secondary servers, the content difference between
the primary and the secondary servers are rarely accessed files which have minor effects
on system overall caching performance.

3.7. Local caching

One significant drawback in current hash based web caching systems is the hot spot
problem. In Tulip, we use file duplication to relieve this problem. To further improve
load balance, Tulip creates a local cache on each proxy server and caches the hot files for
its local clients. Each time, when a client sends a request to its designated server and that
server fetches a file from another server in the cache array, the designated server caches
the cluster which contains the request file in its local cache. The data replacement policy
used in local cache is also LRU. By abosorbing a lot of local requests for the hot objects
on the designated server, the workload can be more evenly distributed, the client can get
quick response. Our simulation shows it is an effective approach for hotspot problem.

3.8. Overhead analysis

To group the related files together, we have introduced extra data structures and algo-
rithms. In [22], we have analyzed the overhead and speedup in dynamic algorithm. From

312 XU, BHUYAN AND HU

our analysis, although the dynamic algorithm brings extra computational overhead, it
can still efficiently improve the web caching performance. The extra storage overhead
of maintaining the extra data structure is about 4 KB per 64 KB cluster, consider the
cheap storage price and large storage space today, it is not a big issue.

For static algorithm, we do not have to record and use the file access history, it
generates the file clusters according to the relative location of the files on the original
server, thus it has much smaller computational overhead than the dynamic algorithm.
Although its caching performance is a little lower than the dynamic algorithm, it has the
best performance/cost ratio.

4. Performance evaluation

In this section, we conduct several trace-driven simulation experiments to evaluate Tulip
performance and compare it with the standard hash based web caching system. We
introduce the simulation environment and workload traces first. Then we analyze the
simulation results.

4.1. Simulation environment

We develop our own simulator for Tulip system and use DiskSim [10] as the underlying
disk simulator which is a widely used comprehensive disk simulator. In our simulation,
when the system fetches a file or a cluster from the disk, DiskSim is called to calculate
the disk access latency. We use Quantum Atlas 10 K 9.1 GB drive as the basic model
(which is the largest model currently provided by DiskSim) and triple the sectors of each
track to expand the capacity to 27.3 GB.

Unless specified, we use the standard server configuration which a cache array con-
tains four servers in our simulation experiments. Each server contains 512 MB memory
and a 27 GB hard disk. The size of the Buffer Cache is set to 396 MB and the ob-
ject cluster is set to 64 KB. 128 bit MD5 algorithm is used for hash key generation.
The standard hash based system is used as the baseline, no file clustering enforced
in it and each server only fetches the requested file. For Tulip, clusters are the basic
disk I/O units. We denote DM as using the dynamic mechanism and SM as using the
static mechanism. LC means local caching is enabled and NLC means local caching is
disabled.

For both baseline system and Tulip, a client request is sent to the designated server
first. For each newly coming client, system randomly assigns a server as the designated
server for this client. The access latency for fetching a file or a cluster from the memory
on the designated server is set to 0. If the file or the cluster is fetched from another server,
we add 5ms network latency. If the data is fetched from the hard disk, the additional
disk access latency is calculated by DiskSim. If the file is neither in the memory nor on
the disk, the file must be fetched from the original remote server, we add another 100
ms network latency.

We use web proxy logs obtained from the National Laboratory for Applied Network
Research (NLANR) in our simulation. The trace data are collected from six individual
servers: pa, pb, rtp, st, sj, sb between April 30, 2002 and May 6, 2002. The characteristics

TULIP: A NEW HASH BASED COOPERATIVE WEB CACHING ARCHITECTURE 313

Table 1. Characteristics of workload trace: pa

Client File Size< Size< Size< Size>

Date number number 1 KB 10 KB 100 KB 100 KB

Apr 30 922 1987913 841727 840772 291251 14163

May 01 979 1857267 762441 817483 264594 12749

May 02 893 1872351 796309 798530 264480 13032

May 03 945 2007385 853894 848746 288238 16507

May 04 1023 1336279 541515 599779 183870 11115

May 05 856 1196386 492466 529373 165641 8906

May 06 943 2050214 890906 844679 300159 14470

Table 2. Characteristics of workload trace: pa (continued)

Total Max Min Median

Date size size size size

Apr 30 21.4 GB 137 MB 0 12.3 KB

May 01 19.2 GB 132 MB 0 15.6 KB

May 02 19 GB 248 MB 0 7.85 KB

May 03 20.9 GB 101 MB 0 11.7 KB

May 04 13.8 GB 191 MB 0 8.3 KB

May 05 12.1 GB 102 MB 0 13.4 KB

May 06 19.9 GB 201 MB 0 8.63 KB

of workload trace: pa are shown in Tables 1 and 2. The other workload traces have the
similar characters, thus, we did not show it here.

4.2. Average client perceived latency

The main purpose of web caching is to minimize the client perceived latency when
fetching a web object, thus the average client perceived latency is the most important
metric to evaluate web caching efficiency. Here we test the average user perceived latency
in Tulip and compare it with baseline. We use four different Tulip configurations: Tulip
(DM, NLC), Tulip (DM, LC), Tulip (SM, NLC) and Tulip (SM, LC). The result is
shown in Figure 6. The baseline system has the worst performance, all the four Tulip
configurations outperform it, the average latency reduction are 54.79, 68.87, 51.38 and
67.01% respectively. Clearly, performance is improved significantly when using clusters.
This is because the spatial localities among files are utilized and the disk access overhead
is decreased. By using dynamic mechanism, Tulip (DM, NLC) and Tulip (DM, LC) have
better performance than corresponding configurations using static mechanism. However,
the performance gain here is trivious, showing the static mechanism is good enough to
achieve satisfactory results, providing the minimal maintenance cost compared with the
dynamic mechanism. Comparing Tulip (DM, NLC) and Tulip (SM, NLC) with Tulip
(DM, LC) and Tulip (SM, LC), we can find using local caching is also very important.
By enabling local cachig, the user perceived latency reduces 30.49% and 31.29% on
average. From this figure, we can get the conclusion that Tulip (DM, LC) has the best

314 XU, BHUYAN AND HU

Figure 6. Average client perceived latency (ms).

performance, but Tulip (SM, LC) might be a better choice since it has near-optimal
performance without introducing too much overheads.

4.3. Cache hit rate

In this experiment, we compare the cache hit rate of Tulip and baseline system, Duplicated
Hashing system is also evaluated. The results are shown in Figure 7, the cache hit rate is
overall hit rate including both the memory and disk cache hit rate. The baseline system
has the highest overall hit rate, the cache hit rate in both Duplicated Hashing and the Tulip
configurations are lower than in the baseline. The reason is in baseline system, there’s no

Figure 7. Overall Cache hit rate comparison.

TULIP: A NEW HASH BASED COOPERATIVE WEB CACHING ARCHITECTURE 315

Figure 8. Cache hit distribution.

file duplication enforced, system has the highest storage space efficiency. Although the
baseline system can cache more files than the other two, these files are rarely accessed
and do not contribute too much for cache hit rate. Thus, the hit rate difference between
the baseline and other systems are not very significant.

Duplicated Hashing, Tulip (DM, NLC) and Tulip (SM, NLC) use the similar duplica-
tion strategy: each file has at most two copies in the system. From the simulation results,
these systems have similar cache hit rate as well. In Tulip (DM, LC) and Tulip (SM, LC),
with the local caching enabled, each file may have more than two copies distributed in
a proxy server’s local cache, their system cache hit rate is slightly lower than systems
without local caching. This is because part of the storage space is allocated for local
caching (in which all the files are duplications). However, the hit rate reduction is small,
which is between 3.68% and 12.98%.

We can find contradiction existing in the results of Figures 6 and 7. Although the
baseline system has the highest overall cache hit rate, it has the highest average client
perceived latency. To figure out the reason, we divide the cache hit rate into two types:
memory and disk. Figure 8 shows the cache hit distribution for all six traces. For Baseline
system, most cache hits are disk cache hits which introduce significant overheads. Du-
plicated Hashing system has similar characteristic. This is because they do not consider
the spatial locality among file accesses. In all Tulip configurations, most cache hits are
low cost memory cache hits. Though Tulip can not achieve a high overall cache hit rate,
they can achieve lower client perceived latency. Dynamic mechanism is the best choice.
Both Tulip (DM, NLC) and Tulip (DM, LC) have higher memory cache hit rate than
their corresponding configurations with the static mechanism. However, the difference
is trivious (which is only 11.43 and 8.58%). We can also find when local caching is
enabled, the memory cache hit percentage is a little lower. However, since local mem-
ory cache hit has the lowest cost (the smallest latency), Tulip system with local cache
enabled still has the smallest latency as shown in Figure 6.

316 XU, BHUYAN AND HU

Figure 9. Memory Cache hit with different cluster sizes, Tulip (DM,NLC).

4.4. Cluster size effect

The size of the object cluster also affects Tulip system performance. With an increased
cluster size, more spatial localities among file accesses can be exploited thus system
can achieve better performance. On the other hand, it may group unrelated files into
the same cluster, system can store fewer clusters, some relatively hot files might be
evicted from the memory which reduces the system efficiency. Thus, an appropriate
cluster size is very important for Tulip to gain the optimal performance. We vary the
cluster size from 4 KB to 256 KB. Figure 9 shows the results. In this simulation, Tulip
(DM, NLC) is used, we also evaluate other Tulip configurations and get the similar
results. As the size of the cluster increased from 4 KB to 128 KB, the memory cache
hit rate increases accordingly. With a 4 KB cluster size, the system memory cache hit
rate is nearly the same as the baseline system which means the system can not utilize
spatial localities efficiently. As the cluster size increased to 8 KB, 16 KB and 32 KB,
the memory cache hit rate increases sharply. However, after the size reaches 64 KB, the
hit rate increases slowly. As the cluster size increased to 256 KB, the memory cache hit
rate even reduces, the reason is mentioned above.

4.5. Server failure

Tulip aims to improve system fault tolerance capability. In this experiment, we test its
performance in case a server failure occurs. Since the possibility of two servers in a cache
array breaking down simultaneously is very low, we only consider one server failure
problem. Figure 10 shows the results. In baseline system, when a server failure occurs,
a large portion of files previously cached on the failed server are lost, the cache hit rate
reduces dramatically. While for both Duplicated Hashing and all the Tulip configurations,
the cache hit rate does not decrease too much in case of server failure because nearly all
the files on failed server have copies on other servers, the workloads previously taken by

TULIP: A NEW HASH BASED COOPERATIVE WEB CACHING ARCHITECTURE 317

Figure 10. Cache hit rates in case of a server failure.

the failed server are migrated to other servers as well. Giving the same fault tolerance
capability, Tulip systems has lower overhead than Duplicated Hashing system, it only
needs one hash function while Duplicated Hashing system needs to calculate multiple
hash values before satisfying a new request.

4.6. Load balance

Tulip can achieve better load balance. In this experiment, we use a synthetic traces with
a Zipf distribution, a small number of files have much higher request frequency than
other files. Table 3 shows the results. Without local caching, the workloads on each sever
are skewed, baseline system and all the Tulip configurations can not achieve good load
balance, the number of requests satisfied by server 1 is much higher than all the other
three servers. By using local caching, the workloads are nearly evenly distributed among
proxy servers. Clearly, local cache can greatly improve system load balance.

Table 3. Tulip load balance property

Server 1 Server 2 Server 3 Server 4

(%) (%) (%) (%)

Baseline 45.12 21.13 19.10 14.65

Tulip (DM, NLC) 46.22 20.03 17.12 16.63

Tulip (DM, LC) 28.38 25.19 22.48 23.95

Tulip (SM, NLC) 47.21 21.38 20.37 11.04

Tulip (SM, LC) 24.16 23.47 28.01 24.36

318 XU, BHUYAN AND HU

5. Related works

Web caching techniques have gained great popularity on the Internet [1–3, 18]. Since
the number of proxy servers on the Internet increases rapidly, developing efficient and
scalable cooperative web caching systems becomes an active research topic in recent
years.

In Summary Cache [8], each proxy server keeps a summary of the cache directory of
each participating server and checks these summaries for potential hits before sending
any queries. It can reduce the number of query messages in hierarchical cache organiza-
tion, however, it is not scalable, system generates considerable summary maintenance
overhead, especially when there’s a large number of servers. Cache Digest [15] uses
similar strategy as Summary Cache.

Robust Hashing [19, 20] uses a very interesting strategy to reduce the maintenance
overhead in case of server join/leave. In Robust Hashing, for each sibling cache, the
URL and the sibling cache name are used together to generate a hash value or score,
the object is then mapped to the sibling cache with the highest score. More specifically,
let h(u, c) be a hash function which maps a URI u and a cache server name c to an
ordered hash space. For a given URL u, robust hashing calculates the score h(u, c1)
h(u,cn) for each of the n sibling caches, it routes the URL u to the sibling cache m that
has the highest score. However, the system must calculate multiple hash scores which
introduces extra runtime computation overhead.

Kawai and Yamaguchi proposed a duplicated hash routing algorithm [13], which is an
extension of Robust Hashing System. Duplicated hash routing solves one of the draw-
backs in hash routing: the lack of robustness against failure. Because WWW becomes
a vital service on the Internet, the fault tolerance of systems that provide the WWW
service is important. The algorithm introduces minimum redundancy to keep system
performance when some caching nodes are crashed. In addition, it optionally allows
each node to cache objects requested by its local clients (local caching) as Tulip, how-
ever, it does not consider server join/leave problem and the duplicated algorithm is not
well defined.

Adaptive Web Caching [24] addresses incremental deployment issue. The general
architecture of the envisioned adaptive web caching system would be comprised of
many cache servers which self-organize themselves into a tight mesh of overlapping
multicast groups and adapt themselves as necessary to changing conditions. This mesh
of overlapping groups forms a scalable, implicit hierarchy that is used to efficiently
diffuse popular web content towards the demand.

In [23], a proxy server connecting to a group of networked clients maintains an index
file of data objects in all clients’ browser caches. If a user request misses in both its local
browser cache and the proxy cache, the browsers-aware proxy server will search the index
file attempting to find it in another client’s browser cache before sending the request to
an upper level proxy or the web server. If there’s a hit in a client, this client will directly
forward the data object to the requesting client; or the proxy server loads the data object
from this client and then sends it to the requesting client. It is an interesting approach to
utilize the client resources, however, it introduce great maintenance overhead.

All the above solutions did not consider memory and disk access dispatch problem.
In [11, 12], Hu and Yang proposed DCD and RAIPD Cache to improve file system

TULIP: A NEW HASH BASED COOPERATIVE WEB CACHING ARCHITECTURE 319

speed by aggregating several small expensive disk I/Os into large ones. UCFS [22]
takes this approach and it is the first one to address slow disk I/O problem on the proxy
servers. It presents a novel, user-space and custom-made file system called UCFS which
can drastically improve I/O performance of a single proxy server. UCFS is a user-level
software component of a proxy server which manages data on a raw disk or disk partition.
Since the entire system runs in the user space, it is easy and inexpensive to implement. It
also has good portability and maintainability. UCFS uses efficient in-memory meta-data
tables to eliminate almost all I/O overheads of meta-data searches and updates. It also
includes a novel file system called Cluster-structured File System (CFS). Tulip extends
UCFS from a single proxy server to the hash based caching systems which contain
multiple proxy servers and Tulip propose an efficient duplication mechanism to achieve
better fault tolerance and load balance which does not addressed in UCFS.

Content Delivery Network (CDN) [6, 7, 9] is another major mechanism used in
today’s web services. Unlike web caching systems which use a reactive mechanism (the
previously client accessed data are cached on proxy servers for future accesses), CDN
takes a more proactive approach, the data are pushed to the content servers which are
topologically close to the clients even before any accesses happened. CDN techniques
may be used in combination with web caching systems to improve the performance.
However, we do not address this problem in this paper.

6. Conclusions and future works

In this paper, we propose Tulip, a new hash based web caching architecture. It has
three contributions. First, tulip exploits the spatial localities among file accesses and
groups files that are likely to be accessed together into clusters. A dynamic and a static
mechanism are introduced for grouping files. Dynamic mechanism can achieve best
performance while static mechanism can achieve near optimal performance with the
minimal cost. Second, Tulip can effectively increase the memory cache hit rates. By
using clusters as the primary data transfer units, a large number of small disk I/Os are
converted into less number of big ones, the slow disk I/O overhead problem is relieved.
Third, Tulip uses a simple and efficient duplication algorithm to achieve fault tolerance
and load balance. It introduces minimal maintenance overhead in case of server join/leave
or server failure. Local caching technique is used to further reduce the client perceived
latency and achieve even better load balance property. Our simulation results show Tulip
outperforms the standard hash based caching systems.

We are currently investigating new algorithms to exploit spatial localities, a data
grouping algorithm with the accuracy of dynamic mechanism with much lower overhead
is desirable. We will also try to reduce the duplication maintenance overhead to further
improve Tulip efficiency.

References

1. M. Baentsch, L. Baum, G. Molter, S. Rothkugel, and P. Sturm. World wide web caching: The application-

level view of the internet. IEEE Communications Magazine, 170–178, June 1997.

2. G. Barish and K. Obraczka. World wide web caching: Trends and techniques May 2000.

320 XU, BHUYAN AND HU

3. A. Bestavros, R. L. Carter, M. E. Crovella, C. R. Cunha. A. Heddaya, and S. A. Mirdad. Application-level

document caching in the Internet in Proceedings of the 2nd International Workshop in Distributed and
Networked Environments (IEEE SDNE ’95), (Whistler, British Columbia), 1995.

4. A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F. Schwartz, and K. J. Worrell, A hierarchical internet

object cache. in Proceedings of USENIX Annual Technical Conference, (Toronto, CA), pp. 153–164, June

1996.

5. V. V. J. Cohen, N. Phadnis, and K. Ross. Cache Array Routing Protocol v1.1.” Internet Draft (draft-vinod-

carp- vl-01.txt), September 1997.

6. G. T. M. Day, B. Cain, and P. Rzewski. A Model for Content Internetworking (CDI). Internet Draft

(draft-ietf-cdi-model-01.txt), Feb. 2002.

7. I. C. F. Douglis and P. Rzewski. Known Mechanisms for Content Internetworking. IETF Draft (draft-

douglis-cdi-known-mech-00.txt), June 2001.

8. L. Fan, P. Cao, J. Almeida, and A. Z. Broder, Summary Cache: A Scalable Wide-Area Web Cache Sharing

Protocol. IEEE/ACM Transactions on Networking, 8 (3), pp. 281–293, 2000.

9. S. Gadde, J. S. Chase, and M. Rabinovich, Web caching and content distribution: A view from the interior.

Computer Communications, 24 (2), 222–231, 2001.

10. G. R. Ganger, B. L. Worthington, and Y. N. Patt. The disksim simulation environment version 2.0 reference

manual.” http://citeseer.nj.nec.com/ganger99disksim.html, Dec. 1999.

11. Y. Hu and Q. Yang. DCD—disk caching disk: A new approach for boosting i/o performance in Proceedings
of the 23rd Annual International Symposium on Computer Architecture(ISCA), Philadelphia, PA, pp. 169–

178, May 1996.

12. Y. Hu, Q. Yang, and T. Nightingale. RAPID-Cache—a reliable and inexpensive write cache for disk I/O

systems Tech. Rep. 1198-0001, Department of Electrical and Computer Engineering, University of Rhode

Island, Nov. 1998.

13. E. Kawai, K. Osuga, and et al., Duplicated Hash Routing: A Robust Algorithm for a Distributed WWW

Cache System. The Institute of Electronics, Information and Communication Engineers Transactions, 5,

pp. 1039–1047, 2000.

14. C. Maltzahn, K. Richardson, and D. Grunwald. Reducing the Disk I/O of Web Proxy Server Caches. in

Proceedings of the USENIX Annual Technical Conference, (Monterey, CA), june 1999.

15. A. Rousskov and D. Wessels, Cache Digest. in the 3th International WWW Caching Workshop, (Manch-

ester, England), June 1998.

16. K. W. Ross. Hash-routing for collections of shared web caches. IEEE Network Magazine, Jan 1997.

17. P. Rodriguez, C. Spanner, and E. W. Biersack. Web Caching Architectures: Hierarchical and Distributed

Caching March 1999.

18. L. Rizzo and L. Vicisano, Replacement policies for a proxy cache IEEE/ACM Transactions on Networking,

8 (2), 158–170, 2000.

19. B. Smith and V. Valloppillil, Personal communications February-June 1997.

20. D. G. Thaler and C. V. Ravishankar, Using name-based mappings to increase hit rates. IEEE/ACM Trans-
actions on Networking, 6 (1), 1–14, 1998.

21. D. Wessels and K. Claffy, ICP, and the Squid Web cache IEEE Journal on Selected Areas in Communi-
cation, 16(3), 345–357, 1998.

22. J. Wang, R. Min, Y. Zhu, and Y. Hu. UCFS—A novel user-space, high performance, custom file system

for web proxy servers. IEEE Transactions on Computers, 1056–1073, Sept 2002.

23. L. Xiao, X. Zhang, and Z. Xu, On reliable and scalable Peer-to-Peer web document sharing. in Proceedings
of International Parallel and Distributed Processing Symposium, (IPDPS’02), (Fort Lauderdale, FL), Apr

2002.

24. L. Zhang, S. Michel, K. Nguyen, A. Rosenstein, S. Floyd, and V. Jacobson, Adaptive web caching:

Towards a new global caching architecture. in 3rd International WWW Caching Workshop, June 1998.

